Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nucleic Acids Res ; 50(D1): D27-D38, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-2312875

ABSTRACT

The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a family of database resources to support global research in both academia and industry. With the explosively accumulated multi-omics data at ever-faster rates, CNCB-NGDC is constantly scaling up and updating its core database resources through big data archive, curation, integration and analysis. In the past year, efforts have been made to synthesize the growing data and knowledge, particularly in single-cell omics and precision medicine research, and a series of resources have been newly developed, updated and enhanced. Moreover, CNCB-NGDC has continued to daily update SARS-CoV-2 genome sequences, variants, haplotypes and literature. Particularly, OpenLB, an open library of bioscience, has been established by providing easy and open access to a substantial number of abstract texts from PubMed, bioRxiv and medRxiv. In addition, Database Commons is significantly updated by cataloguing a full list of global databases, and BLAST tools are newly deployed to provide online sequence search services. All these resources along with their services are publicly accessible at https://ngdc.cncb.ac.cn.


Subject(s)
Databases, Factual , Animals , China , Computational Biology , Databases, Genetic , Databases, Pharmaceutical , Dogs , Epigenome , Genome, Human , Genome, Viral , Genomics , Humans , Methylation , Neoplasms/genetics , Neoplasms/pathology , Regeneration , SARS-CoV-2/genetics , Single-Cell Analysis , Software , Synthetic Biology
2.
Am J Law Med ; 48(4): 447-468, 2022 12.
Article in English | MEDLINE | ID: covidwho-2305571

ABSTRACT

Synthetic biology is an emerging, interdisciplinary research field with much promise for biomedicine. Broadly defined as "the design and construction of new biological systems to perform specific tasks," researchers and clinicians are using synthetic biology to develop targeted treatments for cancer, coronaviruses, and so forth. Because of the experimental nature of synthetic biology, regulation is necessary. Current federal frameworks, such as the Food, Drug, and Cosmetics Act, The Toxic Substances Act of 1976, Institutional Review Boards, and self-regulation are not enough. As a result, states have a unique opportunity to develop statutory and regulatory frameworks to develop a pathway for regulating synthetic biology. In developing legislation, state lawmakers should look to build a comprehensive framework that addresses businesses selling technology for synthesizing DNA codes, monitors orders for synthetic DNA, and develops statewide documentation systems. Additionally, public health information on treatments using synthetic biology can help to educate the public and reduce the prevalence of misconceptions about the technology. In the absence of federal regulation, states should step into the synthetic biology regulatory space to ensure that their citizens are not harmed by therapies developed using synthetic biology.


Subject(s)
Synthetic Biology , Humans , Synthetic Biology/legislation & jurisprudence
3.
Nature ; 617(7959): 176-184, 2023 May.
Article in English | MEDLINE | ID: covidwho-2295264

ABSTRACT

Physical interactions between proteins are essential for most biological processes governing life1. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications2-9. Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein-protein interactions10. We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.


Subject(s)
Computer Simulation , Deep Learning , Protein Binding , Proteins , Humans , Proteins/chemistry , Proteins/metabolism , Proteomics , Protein Interaction Maps , Binding Sites , Synthetic Biology
4.
Future Med Chem ; 14(18): 1325-1340, 2022 09.
Article in English | MEDLINE | ID: covidwho-2275963

ABSTRACT

Although synthetic biology is an emerging research field, which has come to prominence within the last decade, it already has many practical applications. Its applications cover the areas of pharmaceutical biotechnology and drug discovery, bringing essential novel methods and strategies such as metabolic engineering, reprogramming the cell fate, drug production in genetically modified organisms, molecular glues, functional nucleic acids and genome editing. This review discusses the main avenues for synthetic biology application in pharmaceutical biotechnology. The authors believe that synthetic biology will reshape drug development and drug production to a similar extent as the advances in organic chemical synthesis in the 20th century. Therefore, synthetic biology already plays an essential role in pharmaceutical, biotechnology, which is the main focus of this review.


Subject(s)
Metabolic Engineering , Synthetic Biology , Biotechnology , Drug Discovery , Pharmaceutical Preparations
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220023, 2023 02 27.
Article in English | MEDLINE | ID: covidwho-2234871

ABSTRACT

Physical organic chemistry and mechanistic thinking provide a strong intellectual framework for understanding the chemical logic of evolvable informational macromolecules and metabolic transformations in living organisms. These concepts have also led to numerous successes in designing and applying tools to delineate biological function in health and disease, chemical ecology and possible alternative chemistries employed by extraterrestrial life. A symposium at the 2020 Pacifichem meeting was scheduled in December 2020 to discuss designing and exploiting expanded genetic alphabets, methods to understand the biosynthesis of natural products and re-engineering primary metabolism in bacteria. The COVID-19 pandemic led to postponement of in-person discussions, with the symposium eventually being held on 20-21 December 2021 as an online event. This issue is a written record of work presented on biosynthetic pathways and enzyme catalysis, engineering microorganisms with new metabolic capabilities, and the synthesis of non-canonical, nucleobases for medical applications and for studies of alternate chemistries for living organisms. The variety of opinion pieces, reviews and original research articles provide a starting point for innovations that clarify how complex biological systems emerge from the rules of chemical reactivity and mechanism. This article is part of the themed issue 'Reactivity and mechanism in chemical and synthetic biology'.


Subject(s)
COVID-19 , Synthetic Biology , Humans , Synthetic Biology/methods , Pandemics , Bacteria/metabolism , Catalysis
7.
Nature ; 609(7928): 661-662, 2022 09.
Article in English | MEDLINE | ID: covidwho-2050295
8.
9.
ACS Synth Biol ; 11(7): 2229-2237, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1921556

ABSTRACT

Rapid and flexible plasmid construct generation at scale is one of the most limiting first steps in drug discovery projects. These hurdles can partly be overcome by adopting modular DNA design principles, automated sequence fragmentation, and plasmid assembly. To this end we have designed a robust, multimodule golden gate based cloning platform for construct generation with a wide range of applications. The assembly efficiency of the system was validated by splitting sfGFP and sfCherry3C cassettes and expressing them in E. coli followed by fluorometric assessment. To minimize timelines and cost for complex constructs, we developed a software tool named FRAGLER (FRAGment recycLER) that performs codon optimization, multiple sequence alignment, and automated generation of fragments for recycling. To highlight the flexibility and robustness of the platform, we (i) generated plasmids for SarsCoV2 protein reagents, (ii) automated and parallelized assemblies, and (iii) built modular libraries of chimeric antigen receptors (CARs) variants. Applying the new assembly framework, we have greatly streamlined plasmid construction and increased our capacity for rapid generation of complex plasmids.


Subject(s)
COVID-19 , Escherichia coli , Cloning, Molecular , DNA/genetics , Escherichia coli/genetics , Genetic Vectors , Humans , Plasmids/genetics , RNA, Viral , SARS-CoV-2 , Synthetic Biology
10.
Nat Biomed Eng ; 6(3): 225-226, 2022 03.
Article in English | MEDLINE | ID: covidwho-1751720
11.
ACS Synth Biol ; 11(2): 522-527, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1704005

ABSTRACT

The ability to construct, synthesize, and edit genes and genomes at scale and with speed enables, in synergy with other tools of engineering biology, breakthrough applications with far-reaching implications for society. As SARS-CoV-2 spread around the world in early spring of 2020, researchers rapidly mobilized, using these tools in the development of diagnostics, therapeutics, and vaccines for COVID-19. The sharing of knowledge was crucial to making rapid progress. Several publications described the use of reverse genetics for the de novo construction of SARS-CoV-2 in the laboratory, one in the form of a protocol. Given the demonstrable harm caused by the virus, the unequal distribution of mitigating vaccines and therapeutics, their unknown efficacy against variants, and the interest in this research by laboratories unaccustomed to working with highly transmissible pandemic pathogens, there are risks associated with such publications, particularly as protocols. We describe considerations and offer suggestions for enhancing security in the publication of synthetic biology research and techniques. We recommend: (1) that protocol manuscripts for the de novo synthesis of certain pathogenic viruses undergo a mandatory safety and security review; (2) that if published, such papers include descriptions of the discussions or review processes that occurred regarding security considerations in the main text; and (3) the development of a governance framework for the inclusion of basic security screening during the publication process of engineering biology/synthetic biology manuscripts to build and support a safe and secure research enterprise that is able to maximize its positive impacts and minimize any negative outcomes.


Subject(s)
Bioengineering , Publishing , Security Measures/organization & administration , Genes, Viral , SARS-CoV-2/genetics , Synthetic Biology
12.
Elife ; 102021 12 20.
Article in English | MEDLINE | ID: covidwho-1662832

ABSTRACT

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.


Subject(s)
Artificial Cells , Bioengineering/methods , Bioengineering/statistics & numerical data , Bioengineering/trends , Intersectoral Collaboration , Organelles/physiology , Synthetic Biology/trends , Forecasting , Humans
13.
ACS Synth Biol ; 11(2): 528-537, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1655460

ABSTRACT

Over the past decades, there have been numerous outbreaks, including parasitic, fungal, bacterial, and viral infections, worldwide. The rate at which infectious diseases are emerging is disproportionate to the rate of development for new strategies that could combat them. Therefore, there is an increasing demand to develop novel, specific, sensitive, and effective methods for infectious disease diagnosis and treatment. Designed synthetic systems and devices are becoming powerful tools to treat human diseases. The advancement in synthetic biology offers efficient, accurate, and cost-effective platforms for detecting and preventing infectious diseases. Herein we focus on the latest state of living theranostics and its implications.


Subject(s)
Communicable Disease Control/methods , Synthetic Biology , Bacterial Physiological Phenomena , Bacteriophages/genetics , COVID-19/therapy , COVID-19/virology , Humans , Pandemics , Precision Medicine , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
14.
Plant Biotechnol J ; 20(2): 360-373, 2022 02.
Article in English | MEDLINE | ID: covidwho-1621953

ABSTRACT

In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.


Subject(s)
Genetic Engineering , Plastids , Metabolic Engineering , Plants/genetics , Plastids/genetics , Synthetic Biology , Transgenes
15.
Biochem Mol Biol Educ ; 50(1): 122-123, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544214

ABSTRACT

During the Covid-19 pandemic, all on-campus activities were required to be adapted to a distance-learning format, which was especially challenging for practical courses. Molecular biology is a mandatory course for biology undergraduates at Universidade Federal Fluminense. To overcome the impossibility of practical activities, we proposed problem-solving synthetic biology assignments to review and consolidate the knowledge acquired in the molecular biology course. A survey indicated that the synthetic biology challenges were effective to promote students' active learning and worked as a proper substitute to the practical classes.


Subject(s)
COVID-19 , Education, Distance , Humans , Molecular Biology/education , Pandemics , SARS-CoV-2 , Students , Synthetic Biology
16.
Microb Biotechnol ; 14(6): 2254-2256, 2021 11.
Article in English | MEDLINE | ID: covidwho-1522633

Subject(s)
Synthetic Biology
17.
Biochem Cell Biol ; 99(6): 766-771, 2021 12.
Article in English | MEDLINE | ID: covidwho-1440839

ABSTRACT

Cell-free synthetic biology is a rapidly developing biotechnology with the potential to solve the world's biggest problems; however, this promise also has implications for global biosecurity and biosafety. Given the current situation of COVID-19 and its economic impact, capitalizing on the potential of cell-free synthetic biology from an economic, biosafety, and biosecurity perspective contributes to our preparedness for the next pandemic, and urges the development of appropriate policies and regulations, together with the necessary mitigation technologies. Proactive involvement from scientists is necessary to avoid misconceptions and assist in the policymaking process.


Subject(s)
COVID-19/therapy , Synthetic Biology/economics , Synthetic Biology/legislation & jurisprudence , Biocompatible Materials , Biomedical Technology , Biosecurity , Biotechnology , Cell-Free System , Diffusion of Innovation , Health Policy , Humans , Safety , Synthetic Biology/trends
18.
FEMS Microbiol Lett ; 368(17)2021 09 14.
Article in English | MEDLINE | ID: covidwho-1393246

ABSTRACT

The global pandemic of COVID-19 has forced educational provision to suddenly shift to a digital environment all around the globe. During these extraordinary times of teaching and learning both the challenges and the opportunities of embedding technologically enhanced education permanently became evident. Even though reinforced by constraints due to the pandemic, teaching through digital tools increases the portfolio of approaches to reach learning outcomes in general. In order to reap the full benefits, this Minireview displays various initiatives and tools for distance education in the area of Synthetic Biology in higher education while taking into account specific constraints of teaching Synthetic Biology from a distance, such as collaboration, laboratory and practical experiences. The displayed teaching resources can benefit current and future educators and raise awareness about a diversified inventory of teaching formats as a starting point to reflect upon one's own teaching and its further advancement.


Subject(s)
Education, Distance , Synthetic Biology/education , Curriculum , Humans , Internet , Learning , Social Media , Teaching , Virtual Reality
19.
PLoS One ; 16(6): e0252507, 2021.
Article in English | MEDLINE | ID: covidwho-1388918

ABSTRACT

We recently developed 'cellular' reagents-lyophilized bacteria overexpressing proteins of interest-that can replace commercial pure enzymes in typical diagnostic and molecular biology reactions. To make cellular reagent technology widely accessible and amenable to local production with minimal instrumentation, we now report a significantly simplified method for preparing cellular reagents that requires only a common bacterial incubator to grow and subsequently dry enzyme-expressing bacteria at 37°C with the aid of inexpensive chemical desiccants. We demonstrate application of such dried cellular reagents in common molecular and synthetic biology processes, such as PCR, qPCR, reverse transcription, isothermal amplification, and Golden Gate DNA assembly, in building easy-to-use testing kits, and in rapid reagent production for meeting extraordinary diagnostic demands such as those being faced in the ongoing SARS-CoV-2 pandemic. Furthermore, we demonstrate feasibility of local production by successfully implementing this minimized procedure and preparing cellular reagents in several countries, including the United Kingdom, Cameroon, and Ghana. Our results demonstrate possibilities for readily scalable local and distributed reagent production, and further instantiate the opportunities available via synthetic biology in general.


Subject(s)
COVID-19 Testing/standards , COVID-19/diagnosis , COVID-19/epidemiology , Diagnostic Tests, Routine/standards , Indicators and Reagents/standards , Real-Time Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Testing/methods , Cameroon/epidemiology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/metabolism , Ghana/epidemiology , Humans , Indicators and Reagents/chemistry , Indicators and Reagents/metabolism , Indicators and Reagents/supply & distribution , Molecular Diagnostic Techniques , Plasmids/chemistry , Plasmids/metabolism , Real-Time Polymerase Chain Reaction/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Synthetic Biology/methods , Transformation, Bacterial , United Kingdom/epidemiology
20.
Trends Biotechnol ; 39(9): 866-874, 2021 09.
Article in English | MEDLINE | ID: covidwho-1354037

ABSTRACT

The vaccines industry has not changed appreciably in decades regarding technology, and has struggled to remain viable, with large companies withdrawing from production. Meanwhile, there has been no let-up in outbreaks of viral disease, at a time when the biopharmaceuticals industry is discussing downsizing. The distributed manufacturing model aligns well with this, and the advent of synthetic biology promises much in terms of vaccine design. Biofoundries separate design from manufacturing, a hallmark of modern engineering. Once designed in a biofoundry, digital code can be transferred to a small-scale manufacturing facility close to the point of care, rather than physically transferring cold-chain-dependent vaccine. Thus, biofoundries and distributed manufacturing have the potential to open up a new era of biomanufacturing, one based on digital biology and information systems. This seems a better model for tackling future outbreaks and pandemics.


Subject(s)
Drug Industry , Synthetic Biology , Vaccines , Biological Products/standards , Drug Industry/trends , Pandemics , Synthetic Biology/trends , Vaccines/standards
SELECTION OF CITATIONS
SEARCH DETAIL